博客
关于我
650. 2 Keys Keyboard
阅读量:429 次
发布时间:2019-03-06

本文共 2081 字,大约阅读时间需要 6 分钟。

Initially on a notepad only one character 'A' is present. You can perform two operations on this notepad for each step:

  1. Copy All: You can copy all the characters present on the notepad (partial copy is not allowed).
  2. Paste: You can paste the characters which are copied last time.

 

Given a number n. You have to get exactly n 'A' on the notepad by performing the minimum number of steps permitted. Output the minimum number of steps to get n 'A'.

Example 1:

Input: 3Output: 3Explanation:Intitally, we have one character 'A'.In step 1, we use Copy All operation.In step 2, we use Paste operation to get 'AA'.In step 3, we use Paste operation to get 'AAA'.

 

Note:

  1. The n will be in the range [1, 1000].

 

Approach #1: DP. [Java]

class Solution {    public int minSteps(int n) {        int[] dp = new int[n+1];                for (int i = 2; i <= n; ++i) {            dp[i] = i;            for (int j = i-1; j > 1; --j) {                if (i % j == 0) {                    dp[i] = dp[j] + (i/j);                    break;                }            }        }                return dp[n];    }}

  

Approach #2: Greedy. [C++]

public int minSteps(int n) {        int s = 0;        for (int d = 2; d <= n; d++) {            while (n % d == 0) {                s += d;                n /= d;            }        }        return s;    }

  

Analysis:

We look for a divisor d so that we can make d copies of (n / d) to get n. The process of making d copies takes d steps (1 step of copy All and d-1 steps of Paste)

 

We keep reducing the problem to a smaller one in a loop. The best cases occur when n is decreasing fast, and method is almost O(log(n)). For example, when n = 1024 then n will be divided by 2 for only 10 iterations, which is much faster than O(n) DP method.

 

The worst cases occur when n is some multiple of large prime, e.g. n = 997 but such cases are rare.

 

 

Reference:

https://leetcode.com/problems/2-keys-keyboard/discuss/105897/Loop-best-case-log(n)-no-DP-no-extra-space-no-recursion-with-explanation

 

https://leetcode.com/problems/2-keys-keyboard/discuss/105899/Java-DP-Solution

 

转载地址:http://lktuz.baihongyu.com/

你可能感兴趣的文章
Netty5.x 和3.x、4.x的区别及注意事项(官方翻译)
查看>>
netty——bytebuf的创建、内存分配与池化、组成、扩容规则、写入读取、内存回收、零拷贝
查看>>
netty——Channl的常用方法、ChannelFuture、CloseFuture
查看>>
netty——EventLoop概念、处理普通任务定时任务、处理io事件、EventLoopGroup
查看>>
netty——Future和Promise的使用 线程间的通信
查看>>
netty——Handler和pipeline
查看>>
Vue输出HTML
查看>>
netty——黏包半包的解决方案、滑动窗口的概念
查看>>
Netty中Http客户端、服务端的编解码器
查看>>
Netty中使用WebSocket实现服务端与客户端的长连接通信发送消息
查看>>
Netty中实现多客户端连接与通信-以实现聊天室群聊功能为例(附代码下载)
查看>>
Netty中的组件是怎么交互的?
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
netty之 定长数据流处理数据粘包问题
查看>>
Netty事件注册机制深入解析
查看>>
netty代理
查看>>
Netty入门使用
查看>>
netty入门,入门代码执行流程,netty主要组件的理解
查看>>
Netty原理分析及实战(一)-同步阻塞模型(BIO)
查看>>
Netty原理分析及实战(三)-高可用服务端搭建
查看>>