博客
关于我
650. 2 Keys Keyboard
阅读量:429 次
发布时间:2019-03-06

本文共 2081 字,大约阅读时间需要 6 分钟。

Initially on a notepad only one character 'A' is present. You can perform two operations on this notepad for each step:

  1. Copy All: You can copy all the characters present on the notepad (partial copy is not allowed).
  2. Paste: You can paste the characters which are copied last time.

 

Given a number n. You have to get exactly n 'A' on the notepad by performing the minimum number of steps permitted. Output the minimum number of steps to get n 'A'.

Example 1:

Input: 3Output: 3Explanation:Intitally, we have one character 'A'.In step 1, we use Copy All operation.In step 2, we use Paste operation to get 'AA'.In step 3, we use Paste operation to get 'AAA'.

 

Note:

  1. The n will be in the range [1, 1000].

 

Approach #1: DP. [Java]

class Solution {    public int minSteps(int n) {        int[] dp = new int[n+1];                for (int i = 2; i <= n; ++i) {            dp[i] = i;            for (int j = i-1; j > 1; --j) {                if (i % j == 0) {                    dp[i] = dp[j] + (i/j);                    break;                }            }        }                return dp[n];    }}

  

Approach #2: Greedy. [C++]

public int minSteps(int n) {        int s = 0;        for (int d = 2; d <= n; d++) {            while (n % d == 0) {                s += d;                n /= d;            }        }        return s;    }

  

Analysis:

We look for a divisor d so that we can make d copies of (n / d) to get n. The process of making d copies takes d steps (1 step of copy All and d-1 steps of Paste)

 

We keep reducing the problem to a smaller one in a loop. The best cases occur when n is decreasing fast, and method is almost O(log(n)). For example, when n = 1024 then n will be divided by 2 for only 10 iterations, which is much faster than O(n) DP method.

 

The worst cases occur when n is some multiple of large prime, e.g. n = 997 but such cases are rare.

 

 

Reference:

https://leetcode.com/problems/2-keys-keyboard/discuss/105897/Loop-best-case-log(n)-no-DP-no-extra-space-no-recursion-with-explanation

 

https://leetcode.com/problems/2-keys-keyboard/discuss/105899/Java-DP-Solution

 

转载地址:http://lktuz.baihongyu.com/

你可能感兴趣的文章
MySQL千万级大表优化策略
查看>>
MySQL单实例或多实例启动脚本
查看>>
MySQL压缩包方式安装,傻瓜式教学
查看>>
MySQL原理、设计与应用全面解析
查看>>
MySQL原理简介—1.SQL的执行流程
查看>>
MySQL参数调优详解
查看>>
mysql参考触发条件_MySQL 5.0-触发器(参考)_mysql
查看>>
MySQL及navicat for mysql中文乱码
查看>>
MySqL双机热备份(二)--MysqL主-主复制实现
查看>>
MySQL各个版本区别及问题总结
查看>>
MySql各种查询
查看>>
mysql同主机下 复制一个数据库所有文件到另一个数据库
查看>>
mysql启动以后会自动关闭_驾照虽然是C1,一直是开自动挡的车,会不会以后就不会开手动了?...
查看>>
mysql启动和关闭外键约束的方法(FOREIGN_KEY_CHECKS)
查看>>
Mysql启动失败解决过程
查看>>
MySQL启动失败:Can't start server: Bind on TCP/IP port
查看>>
mysql启动报错
查看>>
mysql启动报错The server quit without updating PID file几种解决办法
查看>>
MySQL命令行登陆,远程登陆MySQL
查看>>
mysql命令:set sql_log_bin=on/off
查看>>